Download c source code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

typedef struct
{
	size_t team_count;
	sem_t* batons;
	pthread_barrier_t start_barrier;
	useconds_t stage1_duration;
	useconds_t stage2_duration;
	size_t position;
	pthread_mutex_t position_mutex;
} shared_data_t;

typedef struct
{
	size_t my_team_number;
	shared_data_t* shared_data;
} private_data_t;

int analyze_arguments(int argc, char* argv[], shared_data_t* shared_data);
int create_threads(shared_data_t* shared_data);
void* start_race(void* data);
void* finish_race(void* data);


int main(int argc, char* argv[])
{
	shared_data_t* shared_data = (shared_data_t*) calloc(1, sizeof(shared_data_t));
	if ( shared_data == NULL )
		return (void)fprintf(stderr, "error: could not allocate shared memory\n"), 1;

	int error = analyze_arguments(argc, argv, shared_data);
	if ( error == 0 )
	{
		shared_data->batons = (sem_t*) calloc(shared_data->team_count, sizeof(sem_t));
		if ( shared_data->batons )
		{
			for ( size_t index = 0; index < shared_data->team_count; ++index )
				sem_init(&shared_data->batons[index], 0 /*pshared*/, 0);

			pthread_barrier_init(&shared_data->start_barrier, /*attr*/ NULL, shared_data->team_count);
			shared_data->position = 0;
			pthread_mutex_init(&shared_data->position_mutex, /*attr*/ NULL);
			
			struct timespec start_time;
			clock_gettime(CLOCK_MONOTONIC, &start_time);

			error = create_threads(shared_data);
			if ( error == 0 )
			{
				struct timespec finish_time;
				clock_gettime(CLOCK_MONOTONIC, &finish_time);
				
				double elapsed_seconds = finish_time.tv_sec - start_time.tv_sec
					+ 1e-9 * (finish_time.tv_nsec - start_time.tv_nsec);
					
				printf("Simulation time %.9lfs\n", elapsed_seconds);
			}
				
			pthread_mutex_destroy(&shared_data->position_mutex);
			pthread_barrier_destroy(&shared_data->start_barrier);
			free(shared_data->batons);
		}
		else
		{
			fprintf(stderr, "error: could not allocate memory for %zu batons\n", shared_data->team_count);
			error = 2;
		}
	}
	
	free(shared_data);
	return error;
}

int analyze_arguments(int argc, char* argv[], shared_data_t* shared_data)
{
	if ( argc != 4 )
	{
		fprintf(stderr, "usage: relay_race teams stage1_duration stage2_duration\n");
		return 1;
	}
	
	if ( sscanf(argv[1], "%zu", &shared_data->team_count) != 1 || shared_data->team_count == 0 )
		return (void)fprintf(stderr, "invalid team count: %s\n", argv[1]), 1;

	if ( sscanf(argv[2], "%u", &shared_data->stage1_duration) != 1 )
		return (void)fprintf(stderr, "invalid stage 1 duration: %s\n", argv[2]), 2;

	if ( sscanf(argv[3], "%u", &shared_data->stage2_duration) != 1 )
		return (void)fprintf(stderr, "invalid stage 2 duration: %s\n", argv[3]), 3;

	return EXIT_SUCCESS;
}

int create_threads(shared_data_t* shared_data)
{
	size_t thread_count = 2 * shared_data->team_count;

	pthread_t* threads = (pthread_t*) malloc(thread_count * sizeof(pthread_t));
	if ( threads == NULL )
		return (void)fprintf(stderr, "error: could not allocate memory for %zu threads\n", thread_count), 2;

	private_data_t* private_data = (private_data_t*) calloc(thread_count, sizeof(private_data_t));
	if ( private_data == NULL )
		return (void)fprintf(stderr, "error: could not allocate private memory for %zu threads\n", thread_count), 3;

  #if INVERTED_TEAM_ORDER
	for ( size_t index = shared_data->team_count - 1; index < shared_data->team_count; --index )
  #else
	for ( size_t index = 0; index < shared_data->team_count; ++index )
  #endif
	{
		private_data[index].my_team_number = index;
		private_data[index].shared_data = shared_data;
		pthread_create(&threads[index], NULL, start_race, &private_data[index]);
	}

  #if INVERTED_TEAM_ORDER
	for ( size_t index = thread_count - 1; index >= shared_data->team_count; --index )
  #else
	for ( size_t index = shared_data->team_count; index < thread_count; ++index )
  #endif
	{
		private_data[index].my_team_number = index - shared_data->team_count;
		private_data[index].shared_data = shared_data;
		pthread_create(&threads[index], NULL, finish_race, &private_data[index]);
	}

	for ( size_t index = 0; index < thread_count; ++index )
		pthread_join(threads[index], NULL);

	free(private_data);
	free(threads);
	return 0;
}

void* start_race(void* data)
{
	private_data_t* private_data = (private_data_t*)data;
	shared_data_t* shared_data = private_data->shared_data;
	
	pthread_barrier_wait(&shared_data->start_barrier);
	usleep( 1000 * shared_data->stage1_duration );
	sem_post(&shared_data->batons[private_data->my_team_number]);

	return NULL;
}

void* finish_race(void* data)
{
	private_data_t* private_data = (private_data_t*)data;
	shared_data_t* shared_data = private_data->shared_data;
	
	sem_wait(&shared_data->batons[private_data->my_team_number]);
	usleep( 1000 * shared_data->stage2_duration );
	
	pthread_mutex_lock(&shared_data->position_mutex);
	if ( ++shared_data->position <= 3 )
		printf("Place %zu: team %zu\n", shared_data->position, private_data->my_team_number + 1);
	pthread_mutex_unlock(&shared_data->position_mutex);
	
	return NULL;
}