1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 | /*
* Copyright 2021 Jeisson Hidalgo-Cespedes - Universidad de Costa Rica
* Creates a secondary thread that greets in the standard output
*/
#include <inttypes.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct shared_thread_data {
size_t thread_count;
pthread_mutex_t position_mutex;
size_t position;
pthread_mutex_t stdout_mutex;
} shared_thread_data_t;
typedef struct private_thread_data {
size_t thread_number; // rank
shared_thread_data_t* shared_thread_data;
} private_thread_data_t;
void* run(void* data);
int create_threads(shared_thread_data_t* shared_thread_data);
int main(int argc, char* argv[]) {
int error = 0;
size_t thread_count = sysconf(_SC_NPROCESSORS_ONLN);
if (argc >= 2) {
thread_count = strtoull(argv[1], NULL, 10);
}
shared_thread_data_t* shared_thread_data = (shared_thread_data_t*)
calloc(1, sizeof(shared_thread_data_t));
if (shared_thread_data) {
shared_thread_data->thread_count = thread_count;
shared_thread_data->position = 0;
error = pthread_mutex_init(&shared_thread_data->position_mutex, NULL);
error = pthread_mutex_init(&shared_thread_data->stdout_mutex, /*attr*/NULL);
if (error == 0) {
struct timespec start_time, finish_time;
clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &start_time);
error = create_threads(shared_thread_data);
clock_gettime(/*clk_id*/CLOCK_MONOTONIC, &finish_time);
double elapsed_time = finish_time.tv_sec - start_time.tv_sec +
(finish_time.tv_nsec - start_time.tv_nsec) * 1e-9;
printf("execution time: %.9lfs\n", elapsed_time);
pthread_mutex_destroy(&shared_thread_data->stdout_mutex);
} else {
fprintf(stderr, "error: could not init mutex\n");
error = 11;
}
free(shared_thread_data);
} else {
fprintf(stderr, "error: could not allocated shared memory\n");
error = 12;
}
return error;
}
int create_threads(shared_thread_data_t* shared_thread_data) {
int error = 0;
pthread_t* threads = (pthread_t*)
malloc(shared_thread_data->thread_count * sizeof(pthread_t));
private_thread_data_t* private_thread_data = (private_thread_data_t*)
calloc(shared_thread_data->thread_count, sizeof(private_thread_data_t));
if (threads && private_thread_data) {
for (size_t index = 0; index < shared_thread_data->thread_count; ++index) {
private_thread_data[index].thread_number = index;
private_thread_data[index].shared_thread_data = shared_thread_data;
error = pthread_create(&threads[index], NULL, run
, &private_thread_data[index]);
if (error) {
fprintf(stderr, "error: could not create thread %zu\n", index);
error = 21;
}
}
pthread_mutex_lock(&shared_thread_data->stdout_mutex);
printf("Hello from main thread\n");
pthread_mutex_unlock(&shared_thread_data->stdout_mutex);
for (size_t index = 0; index < shared_thread_data->thread_count; ++index) {
pthread_join(threads[index], NULL);
}
free(private_thread_data);
free(threads);
} else {
fprintf(stderr, "error: could not allocate memory for %zu threads\n"
, shared_thread_data->thread_count);
error = 22;
}
return error;
}
void* run(void* data) {
private_thread_data_t* private_data = (private_thread_data_t*)data;
shared_thread_data_t *shared_data = private_data->shared_thread_data;
pthread_mutex_lock(&private_data->shared_thread_data->position_mutex);
const size_t my_position = ++shared_data->position;
pthread_mutex_unlock(&private_data->shared_thread_data->position_mutex);
pthread_mutex_lock(&private_data->shared_thread_data->stdout_mutex);
printf("Thread %zu/%zu: I arrived at position %zu\n"
, private_data->thread_number, shared_data->thread_count, my_position);
pthread_mutex_unlock(&shared_data->stdout_mutex);
return NULL;
}
|