1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122 | // Copyright 2021 Jeisson Hidalgo <jeisson.hidalgo@ucr.ac.cr> CC-BY 4.0
#include <mpi.h>
#include <unistd.h>
#include <cstdlib>
#include <iostream>
#include <stdexcept>
#define fail(msg) throw std::runtime_error(msg)
void simulate_relay_race(int argc, char* argv[], int process_number
, int process_count);
void run_stage1(int stage1_delay, int process_number, int team_count);
void run_stage2(int stage2_delay, int process_number, int team_count);
void referee(int team_count);
int main(int argc, char* argv[]) {
int error = EXIT_SUCCESS;
if (MPI_Init(&argc, &argv) == MPI_SUCCESS) {
try {
int process_number = -1;
MPI_Comm_rank(MPI_COMM_WORLD, &process_number);
int process_count = -1;
MPI_Comm_size(MPI_COMM_WORLD, &process_count);
char process_hostname[MPI_MAX_PROCESSOR_NAME] = { '\0' };
int hostname_length = -1;
MPI_Get_processor_name(process_hostname, &hostname_length);
simulate_relay_race(argc, argv, process_number, process_count);
} catch (const std::runtime_error& exception) {
std::cout << exception.what() << std::endl;
error = EXIT_FAILURE;
}
MPI_Finalize();
} else {
std::cerr << "error: could not init MPI" << std::endl;
error = EXIT_FAILURE;
}
return error;
}
void simulate_relay_race(int argc, char* argv[], int process_number
, int process_count) {
if (argc == 3) {
if (process_count >= 3 && process_count % 2 == 1) {
const int team_count = (process_count - 1) / 2;
const int stage1_delay = atoi(argv[1]);
const int stage2_delay = atoi(argv[2]);
if (process_number == 0) {
referee(team_count);
} else if (process_number <= team_count) {
run_stage1(stage1_delay, process_number, team_count);
} else {
run_stage2(stage2_delay, process_number, team_count);
}
} else {
fail("error: process count must be odd and greater than 3");
}
} else {
fail("usage: relay_race_dist stage1_delay stage2_delay");
}
}
void run_stage1(int stage1_delay, int process_number, int team_count) {
// wait_barrier()
if (MPI_Barrier(MPI_COMM_WORLD) != MPI_SUCCESS) {
fail("error: could wait for barrier");
}
usleep(1000 * stage1_delay);
const int peer = process_number + team_count;
bool baton = true;
// send(&baton, 1, peer)
if (MPI_Send(&baton, /*count*/ 1, MPI_C_BOOL, peer, /*tag*/ 0
, MPI_COMM_WORLD) != MPI_SUCCESS) {
fail("error: could not send baton");
}
}
void run_stage2(int stage2_delay, int process_number, int team_count) {
// wait_barrier()
if (MPI_Barrier(MPI_COMM_WORLD) != MPI_SUCCESS) {
fail("error: could wait for barrier");
}
int peer = process_number - team_count;
bool baton = false;
// receive(&baton, 1, peer)
if (MPI_Recv(&baton, /*capacity*/ 1, MPI_C_BOOL, /*source*/ peer
, /*tag*/ 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE) != MPI_SUCCESS ) {
fail("could not receive baton");
}
usleep(1000 * stage2_delay);
// send(&peer, 1, 0)
if (MPI_Send(&peer, /*count*/ 1, MPI_INT, /*target*/ 0, /*tag*/ 0
, MPI_COMM_WORLD) != MPI_SUCCESS) {
fail("error: could not send team number to referee");
}
}
void referee(int team_count) {
const double start_time = MPI_Wtime();
// wait_barrier()
if (MPI_Barrier(MPI_COMM_WORLD) != MPI_SUCCESS) {
fail("error: could wait for barrier");
}
int place = 0;
for (int index = 0; index < team_count; ++index) {
int team = 0;
// receive(&team, 1, any_process)
if (MPI_Recv(&team, /*capacity*/ 1, MPI_INT, MPI_ANY_SOURCE
, /*tag*/ 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE) != MPI_SUCCESS ) {
fail("error: could not receive team number");
}
const double elapsed = MPI_Wtime() - start_time;
++place;
std::cout << "Place " << place << ": team " << team << " in " << elapsed
<< "s" << std::endl;
}
}
|